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ABSTRACT

In this paper we propose a technique for combining hypothe-
ses generated in a multi-microphone setting, which exploits
complementarity and collective agreement among ASR out-
puts of different channels. The technique draws upon the
information encoded in the available set of word lattices. As
a first step, we identify word boundaries in which a compre-
hensive inter-channel agreement is found; then, these bound-
aries are used to reduce the global hypothesis search space.
Global word posterior probabilities are estimated for the can-
didate words associated to each of the bounded segments.
As a result, a single combined confusion network is gener-
ated from the multiple lattices. This approach offers a novel
perspective to state of the art solutions based on confusion
network combination. Promising results were obtained from
an experimental evaluation in a simulated domestic environ-
ment equipped with a distributed microphone network. The
development and test sets were simulated using real impulse
responses estimated for a large set of microphone-speaker
position pairs.

Index Terms— Distant speech recognition, hypothesis
combination, multi-microphone, confusion networks

1. INTRODUCTION

The potential of Automatic Speech Recognition (ASR)
through distant non-intrusive sensors is undeniable. Several
research activities are addressing the numerous challenges
introduced by this kind of interaction under different con-
ditions [1]. Of particular interest are application scenarios
as the home automation and the support of physically im-
paired people. The “Distant-Speech Interaction for Robust
Home Applications” (DIRHA) Project1 represents one of the
contexts in which this topic is being investigated. The dis-
tribution of multiple microphones within an enclosure is a

1The research leading to these results has partially received funding from
the European Union’s 7th Framework Programme (FP7/2007-2013) under
grant agreement n. 288121 DIRHA http://dirha.fbk.eu

common strategy followed to develop distant-speech inter-
action systems. In such a setup, different approaches can be
applied, based on either the selection of one microphone, or
a cluster, or the fusion of information extracted from all the
available microphones. Channel selection can be performed
in different possible ways [2, 3], limiting the posterior pro-
cessing to a selected set of signals or components. On the
other hand, in fusion methods the redundancy and comple-
mentarity of the whole available information can be exploited
at signal, feature, model, or recognition hypothesis level. A
traditional method of signal fusion is beamforming, which
can be effective with certain microphone-network geome-
tries. If the microphones are sparsely located from each
other, spatial aliasing and other artifacts can strongly affect
the resulting fusion. Another fusion method, characterized by
a higher complexity than previously described approaches,
is hypothesis level combination. In this case, one exploits
all the available information captured by different sensors
and processed at ASR level, without any constraint on the
geometry of the microphone network.

In the past, Confusion Network Combination (CNC) [4]
and Recognizer Output Voting Error Reduction (ROVER)[5]
techniques were proposed, which can be effectively applied to
distant speech recognition with largely spaced microphones
[6, 7, 8]. These techniques aim to build a compact representa-
tion of the word hypothesis space, from which the most likely
recognized sentence is derived.

In this work, an alternative method for hypothesis com-
bination is investigated, which is characterized by a multi-
microphone confusion network extraction based on the agree-
ment of information shared by lattices derived from differ-
ent microphone signals. The major difference with respect to
CNC is the use of temporal information that is embedded in
the ASR output.

This paper is organized as follows. Section 2 introduces
the standard technique used in hypothesis combination. In
Section 3, the proposed method is described. The experimen-
tal activities and results obtained on a simulated domestic en-
vironment are reported in Section 4, after which the conclu-
sions and future work are discussed.
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Fig. 1. Block diagram of CNC.

2. HYPOTHESIS COMBINATION

One of the first approaches proposed for hypothesis combi-
nation is ROVER [5], a voting procedure originally applied
to the word sequences provided by a set of speech recog-
nizers. This mechanism was later used for CNC[4], provid-
ing a remarkable improvement over ROVER, mainly because
the combination was performed on a hypothesis space, rather
than on individual word sequences. CNC is available in the
SRILM toolkit [9].

The basic unit of CNC is the confusion network (CN)
[10], which is a compact representation of a lattice. As the lat-
tice, the CN is a directed graph, but follows a set of particular
properties: a) the general network is formed by a sequence of
confusion sets or bins, b) each confusion set is composed by
one or more word candidates (or an instance of a SILENCE),
c) each candidate in a confusion set has a posterior probabil-
ity, d) the sum of the posterior probabilities of the candidates
in a confusion set is equal to 1, e) the best hypothesis of the
CN is extracted by selecting the word with the highest pos-
terior probability at each confusion set. In the standard CN
extraction procedure, the best path in the lattice is selected as
the basis structure for the final CN. Then, an iterative align-
ment method optimizes the decision of assigning a word to
a confusion set, or inserting it in a new one inside the final
network.

In order to apply CNC, the lattices generated by the indi-
vidual recognizers are transformed into CNs. Once the CNs
have been extracted, a voting method is applied at a final stage
to combine the different CNs into a single CN (see Figure 1).
A weight can be assigned to the individual CNs before their
combination, which can have a considerable impact on the re-
sulting network. Another factor affecting this process, is the
order in which the networks are combined.

The CNC technique has been explored in multi-microphone
distant speech recognition tasks [6, 7, 8] and has not evi-
denced any significant improvement in comparison to signal
based approaches (e.g., beamforming). Even though channel
selection criteria have been explored for CNC in a multi-
microphone scenario, an optimal solution for selecting or
properly assigning weights to the multiple CNs has not been
identified yet. In the multi-microphone framework addressed
here, the issue of finding the optimal arrangement in the se-
quence of CNs becomes even more critical, since the number
of possible permutations increases with the number of micro-
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Fig. 2. Block diagram of the proposed method.

phones. An exploration at the first step of CNC, namely at
the extraction of a CN from a lattice, indicates that the best-
path based alignments may provide substantially different
resulting structures, even from lattices that encode the same
utterance. A posterior integration of these different structures
may introduce recognition errors.

3. INTER-MICROPHONE COMBINATION
OF INFORMATION

A word lattice incorporates data already evaluated at acoustic
and linguistic level, keeping the most relevant pieces of infor-
mation as a hypothesis space. If a speech source is captured
by M synchronized distant microphones, the corresponding
signals will differ considerably from one another depending
on the position and orientation of the sound source. However,
it is reasonable to think that the word lattices generated from
the ASRs decoding the different microphone signals, though
diverse in structure, share some relevant information concern-
ing the spoken utterance. In this work, we assume that the
most relevant shared information are the word time bound-
aries and the occurrences of the words within these bound-
aries. The inter-microphone agreement of the information
within these boundaries guides the construction of the global
CN through a multi-lattice combination, as shown in Figure
2.

The information captured by multiple timed word lattices
is then incorporated in a unique representation, thus perform-
ing in a coherent way, independently of the order of the lat-
tices to be combined. No particular optimization of the se-
quence or weighting of the lattices is required. The technique
relies on: a) the identification of word boundaries that will
constitute possible confusion sets in the final network; b) the
validation of the segments denoted by the identified bound-
aries. The latter step involves the search of potential word
candidates within the selected boundaries, and the estimation
of a posterior probability for each of the candidate words.

3.1. Inter-microphone Word Boundary Agreement

In this work, a straightforward approach is adopted to identify
the potentially valid word boundaries, within which a word
should be recognized. The approach collects the boundaries
of all the links in all the available lattices, removing those
links whose posterior probabilities are below an empirically



identified threshold. A peak selection over the cumulative oc-
currence of the boundaries in all the lattices is performed (as
shown in Figure 3a), for the identification of the boundaries
to be used in the next stage of the processing.

3.2. Segment Validation

The previously identified temporal boundaries B1, ..., BN
are used to determine a set of search segments within the
lattices. A temporal threshold ∆ is set to define a range of
frames around each boundary (see Figure 3b). This threshold
is dynamically computed as a function of the segment length.
For the generic ith temporal boundary, all the links starting in
the range from (Bi−∆) to (Bi + ∆), and ending in the range
from (Bi+1 −∆) to (Bi+1 + ∆), determine a set of potential
candidate words to include in the confusion set. A global pos-
terior probability is estimated for each of these words by first
computing an intra-microphone posterior score, inspired by
the confidence measure used in [11]. For each microphone j
and starting boundary index i, the intra-microphone posterior
probability C assigned to the lth word Wlij is computed as:

C ([Wlij , Bi, Bi+1]) =

X
[w;τ,t]:

[Bi−∆≤τ≤Bi+∆],
[Bi+1−∆≤t≤Bi+1+∆]

P
“
[Wlij , τ, t] |xT1 (j)

”
(1)

where P
(
[Wlij , τ, t] |xT

1 (j)
)

corresponds to the posterior
probability of the link characterized by the word Wlij given
the observation sequence xT

1 (j) related to the lattice derived
from the jth microphone.

The resulting intra-microphone scores are then averaged
over all the channels as follows:

C ([Wli, Bi, Bi+1]) =
1

M

X
j

C ([Wlij , Bi, Bi+1]) (2)

where Wli denotes the lth word of the ith confusion set.
The null word is assigned a posterior that is complemen-

tary to the sum of the posteriors of the other words hypothe-
sized for the segment under analysis. If a null word dominates
a segment, a new search is performed, setting as end-time the
next available boundary. Otherwise, the search stops, assign-
ing the estimated posteriors to each of the candidates in the
segment. These candidates constitute a new confusion set in
the final network.

Note that for each confusion set i, it holds the following
relationship (including the null word):

X
l

C ([Wli, Bi, Bi+1]) = 1 (3)
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Fig. 3. Example on a single lattice, segment B1-B2, of the
selection of links for segment validation.

4. EXPERIMENTS

We have carried out experiments of recognition of read com-
mands spoken in a domestic environment equipped with a dis-
tributed microphone network. The development and test sets
were simulated using real impulse responses estimated for
a large set of microphone-speaker position/orientation pairs.
This data is part of the DIRHA corpora [12]. A single room
(i.e., the living room), was selected for the experiments, but it
must be noticed that the experimental work can be easily ex-
tended to other environments and set-ups. The room is char-
acterized by an average T60 of 0.7 seconds. A subset of 5
microphones was employed, including ones on the wall (L1L,
L2R, L3L, L4R), and on the ceiling (LA6) (see Figure 4).

The Hidden Markov Models toolkit (HTK) was used as
speech recognition engine. The system adopted the conven-
tional 39-dimensional MFCC feature vectors, including 12
MFCC and log energy, extracted every 10 ms (using a win-
dow of 25ms size), and augmented with their first and second
derivatives. Cepstral mean normalization was applied. Mono-
phone classes, 27 in total, were modeled with 3 states and
32 Gaussians per state. Contaminated acoustic models [13]
were trained on speech simulated at a limited random set of
source positions and orientations. The APASCI database[14]
was used as training material. This database includes 164
speakers, each uttering 20 phonetically rich sentences. A bi-
gram language model was trained over spontaneous and read-
commands, collected also as part of the DIRHA project. The
lexicon size of this task is 380 words. The language of the
spoken utterances was Italian.

A common parameter explored in speech recognition is
the beam pruning threshold, which excludes lower probabil-
ity hypotheses at an earlier decoding level. A reduction of the
beam pruning threshold makes the recognition less complex
and faster (very useful in a real-time application) but some-
times introduces errors in the final hypothesis selection. In
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order to measure the validity of the technique under differ-
ent lattices pruning conditions, different beam thresholds (80,
100, 120) were evaluated. Only the results with beam 80(b80)
and 100(b100) are reported here, as results with beam 120
were very similar to those of beam 100.

The development set comprises 61 read-command phrases
spoken at 43 position-orientations within the livingroom. All
sentences of this set were manually segmented and labeled.
The test set includes 2245 read-command phrases spoken
at 74 position-orientations within the room, which amounts
roughly to 1 hour 20 minutes of speech. The selection of
source position/orientation was done randomly for each of
the phrases spoken by a specific speaker. No overlap between
development and test sets holds as for utterances spoken by a
speaker at a specific location/orientation.

4.1. Results

In the following, the Multi-Microphone Confusion Network
extraction technique proposed in this work is referred to as
MMCN. The results of MMCN were compared to those of
CNC. Additionally, ROVER results are reported. Table 1
shows the overall performance of the evaluated techniques on
the development and test sets. The first five rows of the ta-
ble report the results with Maximum A Posteriori (MAP) ob-
tained from decoding each channel. For reference, the result
extracted from the best channel for each utterance is indicated
as ORACLE. Like CNC, ROVER is affected by the order in
which the hypothesis are combined. The average(avg), mini-
mum(min), and maximum(max) results are derived from the
120 possible permutations of microphones. CNC obtained a
Word Error Rate (WER) ranging from 8.72 to 10.07 in the
case of beam 80, and from 7.72 to 8.39 for beam 100. In the
same set, it was observed that using manually derived refer-
ence word boundaries (MMCN Ref) produced an improve-
ment over CNC for all the beam pruning cases. This proce-
dure was not implemented in the test set, since manual anno-
tations were not available. With the automatic identification
of the word boundaries and validation of competing segments
(MMCN Auto), MMCN performed better than CNC avg.

Table 1. WER results on Development(Dev) and Test sets
Dev Test

Mic b80 b100 b80 b100

MAP

L1L 13.76 11.41 16.99 14.86
L2R 16.11 11.07 16.21 14.32
L3L 9.06 6.38 17.18 14.67
L4R 14.09 12.08 19.43 17.42
LA6 14.77 12.42 17.60 15.55

ORACLE 1.34 2.35 5.13 4.73

ROVER
avg 8.60 7.53 14.32 12.65
min 7.72 7.38 14.16 12.46
max 10.07 8.39 14.50 12.89

CNC
avg 9.25 8.12 13.71 12.17
min 8.72 7.72 13.66 12.09
max 10.07 8.39 13.79 12.22

MMCN Ref 8.39 7.38 - -
Auto 9.06 7.72 14.39 13.07

Concerning the results on the test set, both CNC and
MMCN outperform the standard MAP. MMCN Auto per-
formed better than MAP over all channels. It is worth noting
that although the resulting WER from MMCN is not im-
proved in comparison to CNC, there is a clear advantage in
using the proposed method in a multi-microphone setting.
CNC presents a weakness since the optimal arrangement of
CNs is unknown a priori. This order of CNs varies as a
function of the source location and orientation, and the mi-
crophone setup. On the contrary, MMCN does not require
such an optimization step.

A particular observation was the trend of a microphone
to provide lower WER for the MAP decoding (L3L in the
development set and L2R in the test set). This is caused by the
set of source location/orientation coordinates used to generate
the different sets.

5. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a method of multi-lattice agree-
ment for hypothesis combination. From an initial exploration
on the development set, we observed that when adequate word
boundaries are provided, the proposed method outperforms
the state of the art. Next work will concern the develop-
ment of more efficient algorithms, for the identification of
boundaries and the validation of the segments. This work
highlighted that there is room for significant improvement for
the addressed techniques, as shown by the ORACLE perfor-
mance. Future investigation will also regard different recog-
nition tasks, the validation on real data, and the impact of ad-
ditional microphones (available in the DIRHA framework).
In a setting with a large number of sensors, applying CNC
and ROVER would make the analysis problematic, given the
increased number of required microphone permutations. As
described before, this does not represent a problem for the
proposed MMCN method.
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