Exploiting Inter-Microphone Agreement for Hypothesis Combination in Distant Speech Recognition

Cristina Guerrero^{1,2} and Maurizio Omologo¹

1 - Fondazione Bruno Kessler (FBK)-Irst, Trento, Italy

2 - PhD student at University of Trento, Trento, Italy

EUSIPCO 2014 - Lisbon, Portugal

reverberation attenuation noise simultaneous speech what did he say?

sensing coding communication of devices

Multi-microphone Distant Speech Recognition (DSR)

Scenario - DIRHA

Goal: Voice-enabled Home Automation

- Distant Speech Recognition (DSR)
- Robustness to domestic-context conditions
- Always listening system
- Multi-room multi-sound sources
- Distributed microphone network

Some of the results presented in this talk represent achievements obtained under DIRHA (Distant-speech Interaction for Robust Home Applications). This project is funded by the European Union, Seventh Framework Programme for research, technological development and demonstration, grant agreement no. FP7-288121. For more details, see: http://dirha.fbk.eu

Outline

- Problem: Multi-Mic DSR
- Hypothesis Combination
- Multi-Mic Confusion Network
- Experiments and Results
- Conclusions

	_	

Multi-microphone DSR

Multiple signals => one recognition hypothesis?

Multi-microphone DSR

- Multiple signals => one recognition hypothesis?
- Combination: all (or a subset of) info pieces
- or Selection [Wolf-Nadeu 2014]
 - Signal processing: beamforming
 - Feature level: models
 - Hypothesis combination: ROVER [Fiscus 1997],
 Confusion Network Combination (CNC) [Evermann-Woodland 2000, Stolcke et al. 2000]

Hypothesis Combination

Multi-Mic Confusion Network (MMCN)

Multi-Mic Confusion Network (MMCN)

[Guerrero C., Omologo M., "Word Boundary Agreement to Combine Multi-Microphone Hypothesis in Distant Speech Recognition". HSCMA 14]

- Temporal agreement (word-boundaries)
- Information within these boundaries
 - Posterior Probabilities
 - Candidates in a Confusion Set
- No particular order of lattices

Q: Would additional mics benefit MMCN?

Experiments

- Full set of mics(15) in a room
- Recognize Continuous Spoken Commands
- Tested on: Simulated [2245 read commands], and Real data [278 spontaneous commands]
- Acoustic models: trained on contaminated dataset APASCI (phonetically rich sentences)
- Comparison to other techniques
 - BeamformIt / ROVER/ CNC
- Different mic-group combinations

Results

- MMCN vs other approaches: Beamforming (BF), ROVER, CNC •Cx: configuration # mics - No order for MMCN
- Alignment based approaches averaged over permutations
- Tested on simulated/real sets
- Oracle: best mic per utterance

Results

Analysis of a Specific Mic Ordering: alignment based approaches subject to a specific combination of elements (hypotheses, confusion networks) •MMCN vs Rover/CNC •Effect of Number of Mics

Conclusions

- Comparable performance to state of the art techniques
- MMCN not affected by order of mics
- Balanced increase of mics can benefit combination, but
 quality of lattices is important
- Currently:

Improvement of automatic parameter estimation. Incorporate context into MMCN by rescoring. Lattices evaluation.

Thank you for your attention.

Cristina Guerrero guerrero@fbk.eu

Experimental details:

- Acoustic Models
 - Trained on contaminated APASCI (It) 16kHz
 - 27 context independent phone units (of the Italian language)
 - Features: MFCC_0_D_A_Z (w=25 ms, o=10ms)
- Language Model
 - Bigram Read & spoken commands
- Systems
 - HTK, SRILM (posterior prob.), NIST Scoring Toolkit 2.4.0,
 - Beamformlt 3.4.1.

Oracle

- Different on each dataset (more complextask for RealSet)
- Changes on setof microphones and beam threshold Beam 0
 - WER
 - 5 mics (Dev 2.7, Test 2.35)
 - 15mics (Dev 6.06, Test 4.51)

MMCN vs BF/ROVER/CNC

TestSet b0 Oracle: 4.51

	BF	ROVER	CNC	MMCN
C5	15.38	12.20	11.82	12.22
C10	14.23	11.76	11.50	12.20
C15	14.07	11.93	11.57	12.26

RealSet b0 Oracle: 7.28

ROVER devset / testset (sim)

Mics		B80	B100	В0
	avg	8.32	7.38	7.38
5	min	7.72	6.71	6.71
	max	9.4	8.05	8.05
	avg	9.57	8.66	8.69
10	min	9.06	8.05	8.05
	max	10.4	9.4	9.4
	avg	10	9.08	8.99
15	min	9.06	8.39	8.05
	max	10.4	9.73	9.4

Mics		B80	B100	B0
	avg	14.32	12.69	12.2
5	min	14.24	12.56	12.08
	max	14.41	12.87	12.37
	avg	13.47	12.21	11.76
10	min	13.38	12.06	11.66
	max	13.65	12.4	11.91
	avg	13.53	12.38	11.93
15	min	13.39	12.27	11.85
	max	13.64	12.46	11.99

	Dev		Test	
Config	b100	b0	b100	b0
C5	8.05	8.05	12.18	11.82
C10	8.92	9.26	11.87	11.50
C15	9.37	9.44 min 8.72 max 9.73	11.99	11.57 min 11.48 max 11.63

