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Abstract
In a multi-microphone distant speech recognition task, the re-
dundancy of information that results from the availability of
multiple instances of the same source signal can be exploited
through channel selection. In this work, we propose the use of
cepstral distance as a means of assessment of the available chan-
nels, in an informed and a blind fashion. In the informed ap-
proach the distances between the close-talk and all of the chan-
nels are calculated. In the blind method, the cepstral distances
are computed using an estimated reference signal, assumed to
represent the average distortion among the available channels.
Furthermore, we propose a new evaluation methodology that
better illustrates the strengths and weaknesses of a channel se-
lection method, in comparison to the sole use of word error
rate. The experimental results suggest that the proposed blind
method successfully selects the least distorted channel, when
sufficient room coverage is provided by the microphone net-
work. As a result, improved recognition rates are obtained in a
distant speech recognition task, both in a simulated and a real
context.
Index Terms: distant speech recognition, channel selection,
cepstral distance, reverberation

1. Introduction
State-of-the-art speech recognizers achieve highly accurate
recognition rates when the speech signal is recorded by a close-
talking microphone, e.g., a head-set. In a distant-talking set-
ting, the distance between the speaker and the microphone in-
troduces challenges to speech recognition as it must deal with
interferences such as background noise, competing speakers,
and reverberation. In order to address such difficulties, vari-
ous approaches have been studied [1, 2, 3, 4, 5]. Many of the
most effective solutions exploit multiple microphones, either as
compact or distributed arrays, to capture multiple distorted in-
stances of the same source signal. These multiple signals can
be utilized at different stages of the recognition system, such as
at front-end processing, decoding, or post-decoding stages.

Concerning the problem of distant speech recognition
(DSR) in a multi-microphone setting, it is reasonable to cate-
gorize the various approaches present in the literature as solu-
tions focused on the combination or the selection of elements,
which can be for example: signals, features, or decoding out-
puts [1]. In this work, we aim our attention to signal processing
approaches. The most representative solutions at this level are
noise reduction, single and mutiple channel enhancement [6],
beamforming [1, 7] and channel selection [8]. The application
of beamforming on distantly located microphones is fundamen-
tally restricted due to the effects introduced by spatial aliasing.

In a setting in which the microphones of the network are largely
distributed in a room, a valid alternative for combining different
signals is given by channel selection (CS). The goal of CS is
to identify, among all the available input signals, the one that
leads to the best recognition accuracy. In a real application con-
text this should work dynamically, selecting the optimal signal
at each speech input. A scoring mechanism is required in order
to identify the best channel.

The signal related scores explored for CS can be either in-
formed or blindly computed. Informed scores assume the avail-
ability of some knowledge or reference information, and are
often used to establish an upper-bound of performance. Such
scores include those computed from room impulse responses
[9], exploiting for example early to late reflections, signal to
noise ratio (SNR) [10], and CS based on the position and orien-
tation of the speaker [11]. Proposed blind scores include those
computed from the energy of the signal, cross-correlation be-
tween signals [12], the variance of the energy envelope [8], and
the modulation spectra of the original and of the beamformed
signals [13]. According to an exhaustive survey on various CS
approaches, presented in [14], the method based on the envelope
of the signal energy achieved the highest recognition accuracy.

Distance measures for speech processing were introduced
and applied primarily by the speech coding community to quan-
tify the distortion introduced by the coding process [15, 16, 17].
Similar scoring strategies, although with different goals, are
also exploited by other communities, such as speech enhance-
ment and speech recognition. A lot of efforts have been made
in order to produce scores that objectively evaluate the effec-
tiveness of different speech processing techniques [18], as for
example the cepstral distance (CD), the log-likelihood ratio,
and the frequency-weighted segmental SNR. Such scores have
been shown to correlate well with subjective evaluation of sig-
nal quality [19]. It is therefore reasonable to assume that the
use of objective signal quality scores can lead to a meaningful
selection of the least distorted channel, among the signals of a
distributed microphone network. Particularly, the CD is long
known for its effectiveness and flexibility in different applica-
tion fields [20].

In this work, we propose the use of the CD as a scoring
function for the selection of the best, or least distorted, channel
in a real, multi-microphone setting. In a first case we assume
the availability of the clean, or close-talk signal. In this case,
we show that the use of cepstral distance can lead to a mean-
ingful selection of the best channel. In a second case, the clean
signal is no longer available. On the other hand, we derive a ref-
erence, in the log-magnitude spectrum domain, that can be used
in order to assign a distance to each of the available channels,
and facilitate the selection of the least distorted one. The exper-



imental results prove the success of the proposed blind channel
selection in both simulation and real data.

The remainder of this paper is structured as follows. In
Section 2, the details of the proposed scoring functions and CS
methods are illustrated. Section 3 describes the experimental
activities performed in order to assess the value of various CS
methods. A discussion of the experimental findings is elabo-
rated in Section 4. Finally, the conclusions of this work are
presented in Section 5.

2. Cepstral distance based channel selection
In a multi-microphone scenario, with many microphones dis-
tributed in the room, it is reasonable to assume that an objective
measure of signal quality would be advantageous in detecting
the least distorted channel. Perhaps the most intuitive objective
measure for signal quality, that applies well in cases of reverber-
ation, is the CD. Cepstrum-based comparisons are equivalent to
comparisons of the smoothed log spectra of the signals [20]. In
this domain, the reverberation effect can be viewed as additive
[21]. Furthermore, as discussed in [22], the CD has a particu-
lar frequency domain interpretation in terms of relationship be-
tween a set of signals and their geometric mean spectrum. Here,
we study the use of CD for channel selection, in an informed
and a blind fashion.

2.1. Informed channel selection
Assuming the availability of the close-talk signal, x(t), and a
multi-microphone setting, let

xm(t) = x(t) ∗ hm(t) (1)

be the signal captured by microphone m, where hm(t) is the
related impulse response (IR). Here, xm(t) is not distorted by
environmental noise. The CD between the close-talk reference
and the distorted signal is defined as [19]:

d(cx, cm) =
10

log10

√√√√2

p∑
k=1

[cx(k)− cm(k)]2 , (2)

where cx and cm are the cepstral coefficient vectors of the
close-talk and distorted signals respectively, and p is the number
of cepstral coefficients used.

From the set of CDs between the reference and all the avail-
able channels, the least distorted one can be selected as follows:

M̂x = argmin
m

d(cx, cm). (3)

2.2. Reference extraction for blind channel selection
In a real scenario, the close-talk signal is not available. There-
fore, we propose a non-intrusive method for cepstral based
channel selection, which exploits a multi-microphone distant
speech recognition scenario for the estimation of a reference.
When the speaker is oriented towards one of the many available
distributed microphones, and/or is located at a distance lower
than the critical distance [23], it is observed that for the cor-
responding signal, the direct component is generally stronger
than the reverberated part. Other channels, whose energy is at-
tenuated by the head of the speaker and other possible propaga-
tion effects, are expected to be more affected by reverberation.
Based on this observation, we can average in the log-magnitude
spectrum domain as follows:

R̂(t, ω) =
1

M

∑
m

log |Xm(t, ω)| , (4)

where Xm(t, ω) is the short-time Fourier transform (STFT) of
the signal captured by microphone m, and M is the total num-
ber of microphones. This represents the corresponding geomet-
ric mean spectrum [22] and, using Eq. 1 this can be rewritten
into:

R̂(t, ω) = log |X(t, ω)|+ 1

M

∑
m

log |Hm(t, ω)| , (5)

where X(t, ω) and Hm(t, ω) are the STFT of the clean sig-
nal and m-th IR respectively. In Eq. 5, the first term is the
log-magnitude spectrum of the close-talk signal, and the sec-
ond term represents an estimation of the average reverberation
of the room, based on the available microphone channels. Let
us assume that one microphone signal is better than the others
in terms of direct to reverberant ratio. The basic assumption is
that such a signal will be characterized by a larger distance from
the resulting geometric mean spectrum. Therefore, from the set
of CDs between the geometric mean spectrum, R̂(t, ω), and all
the available channels, the least distorted one can be selected as
follows:

M̂R̂ = argmax
m

d(cR̂, cm) , (6)

where cR̂ and cm are the cepstral coefficient vectors of the ref-
erence and of the microphone m, respectively.

So far, it was assumed that the only source of distortion of
the M acquired signals was the reverberation. However, in a
real setting this is rarely true, as environmental noise also ex-
ists. Given the purpose of this study, here we assume that the
reverberation effect dominates over a background noise that af-
fects all the microphones.

3. Experiments
3.1. Experimental setup
The experimental scenario is taken from the DIRHA Project
setup [24], see http://dirha.fbk.eu. The experiments are per-
formed within the livingroom, a room characterized by a T60
of about 0.75s and equipped with multiple largely-spaced mi-
crophones, located on the walls and ceiling. A subset of 6 mi-
crophones are selected for this study, as shown in Figure 1.

The training data consists of 7138 simulated reverberant ut-
terances, derived from the full clean Wall Street Journal (WSJ0-
5k) [25] training set. This training set was simulated us-
ing recorded IRs, which consider only channels in which the
speaker position/orientation (POSORIs) is direct towards a mi-
crophone.

The test material is extracted from the WSJ0-5k sub-set of
the DIRHA-English [26] corpus, which includes data recorded
in the real livingroom. With regard to the test sets, in order to
focus the analysis on the different CS methods, two scenarios
are considered:

• In the first one, the speaker POSORI is always direct
in respect to one microphone. Such a setting narrows
the DSR problem, allowing us to perform an intuitive
analysis of the correlation between signal distortion and
recognition performance. For this scenario, simulated
data is generated under two specific POSORI configura-
tions (DirSim). Additionally, real data is extracted based
on a set of 7 different POSORIs (DirReal). Figure 1 de-
picts the POSORIs used for the first scenario.

• The second scenario incorporates a set of 36 mixed
POSORIs, for each of the simulated and real cases
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Figure 1: DIRHA Setting. Dots in black indicate the micro-
phones used. Arrows show position/orientation of the speakers
for the Direct scenarios, in red for simulated data, and in blue
for real data.

(MixSim and MixReal). In this scenario, the adopted
POSORIs are distributed in the room and are not only
direct.

For all the simulated data, the close-talk signals were
recorded in the FBK recording studio, while for the real
data, these were captured by a head-set. The DirSim,
MixSim and MixReal datasets are composed by 410 utterances
each. DirReal dataset is composed by 82 utterances. An ideal
voice activity detection is assumed to be applied over real data.

3.2. Channel selection methods
The following CS methods are included in the evaluation:

• CDi is the proposed informed CS method that uses the
close-talk reference, as explained in Section 2.1.

• CDref is the blind proposed CD method that uses the
geometric mean spectrum as a reference, as described in
Section 2.2.

• EV [14] is the state-of-the-art CS method, based on En-
velope Variance. It consists in selecting the channel as:

Ĉ = argmax
m

∑
k

Vm(k)

max
m

(Vm(k))
, (7)

where Vm(k) is a variance measure computed from the
sub-band envelopes of the mean-subtracted filter-bank
energies, for each sub-band k and channel m. This al-
gorithm uses filter-bank outputs extracted by the speech
recognition system.

• Random is a random selection of a channel performed
at each utterance.

3.3. Speech recognition
Each of the signals captured by the microphones is decoded
with a recognizer implemented with the Kaldi speech recog-
nition toolkit [27], with the following configuration. The lan-
guage and lexicon models are built according to the s5 recipe
included in the Kaldi WSJ configuration. The recognition
uses deep neural networks, trained according to Karel’s recipe
[28], on top of MFCC-LDA-MLLT-fMLLR transformed fea-
tures. The network architecture is shaped by 6 hidden layers of
1024 neurons, with a context window of 11 consecutive frames
(5 before and 5 after the analysis frame), and an initial learning

rate of 0.008. The recognition performance on the close-talk
material yields a word error rate (WER) of 3.7%.

3.4. Evaluation Methodology
CS approaches are traditionally evaluated by means of recog-
nition results using models trained on clean speech [8, 13] and
expressed in terms of WER. Such an experimental setup how-
ever introduces certain limitations. First, in a complex task as
the WSJ, recognition of distant reverberant speech using clean
acoustic models results in a significant performance loss [6].
Evaluating a CS method in such model mismatching cases,
makes it hard to individuate any of its possible advantages. Sec-
ond, commonly exploited approaches that aim at the improve-
ment of the single distant microphone (SDM) recognition accu-
racy, often result in more distorted channels having a WER as
low as, or in certain cases lower than, the least distorted avail-
able channel.

In order to obtain a CS evaluation methodology, unre-
strained from the above limitations, we propose the use of two
evaluation measures, in addition to the WER: (i) the matching
rate to an informed CS, and (ii) the average normalized CD be-
tween the selected channel and its close-talk reference.

The Informed CS Matching (ICSM) rate is a meaningful
evaluation measure in studying how often a certain method suc-
ceeds in selecting the least distorted channel. It is defined as

ICSM =
# of matching selections

N
, (8)

where N is the total number of utterances in the test set. In prin-
ciple, any objective measure can be used to create the matching
ground truth; in this study, we use the informed CS based on
CD. It is worth noting that such a matching measure can not
be computed using recognition performance because, as previ-
ously discussed, more than one channel may achieve the same
minimum WER.

The Average Normalized CD (ANCD) is computed as fol-
lows:

ANCD =
1

N

∑
n

d̃n(cx, cM̂ ) , (9)

where cx and cM̂ are the cepstra vectors of the close-talk sig-
nal, x, and the channel, M̂ , selected by a certain CS method
respectively. Here, d̃n(cx, cM̂ ) refers to the cepstral distance,
normalized over the maximum CD from all signals, for the ut-
terance n. Therefore, this measure will be bounded within the
ANCD of the informed CS method and 1:

ANCD ∈ [min
m

(d̃n(cx, cm)), 1] . (10)

4. Results and Discussion
In this section, we analyze the performance of the proposed CS
methods using the previously described corpora and evaluation
criteria. First, we present the CD of the 6 different microphones
to the close-talk signals. Second, the proposed ICSM rate and
ANCD measures are displayed. Third, recognition results are
reported.

4.1. Single distant microphone Cepstral Distance
Table 1 reports the average CD between the close-talk signal
and each of the SDM used in the study. For the direct sim-
ulated case (DirSim), the channel that is intuitively identified
as optimal (L2R) has the lowest CD to the close-talk. In the
remaining cases, the same trend is not evident because of the



Table 1: Average CD of the distributed microphones.
Direct Mixed

SDM DirSim DirReal MixSim MixReal
L1C 3.92 2.98 3.79 3.09
L2R 3.25 3.14 3.71 3.15
L3L 3.74 3.05 3.75 3.13
L4L 3.93 3.05 3.81 3.12
LA6 3.78 2.97 3.73 3.04

LD07 3.87 2.89 3.73 3.01

Table 2: Informed CS Matching Rate (ICSM) (%).
CS DirSim DirReal MixSim MixReal
EV 47.92 31.70 39.36 39.85

CDref 75.00 81.70 75.30 52.32

Table 3: Average Normalized CD (ANCD) between the selected
channel and its clean reference.

CS DirSim DirReal MixSim MixReal
CDi 0.82 0.84 0.85 0.88
EV 0.91 0.89 0.91 0.91

CDref 0.88 0.86 0.89 0.89

averaging among the multiple POSORIs adopted by the speak-
ers. However, in a per utterance analysis, it is clear that when
a direct path between the speaker and one of the microphones
exists, the corresponding signal has the lowest CD among all
the microphones.

4.2. Proposed evaluation
In Table 2, the informed CS matching rate, ICSM, is presented
for EV and CDref. The proposed blind CS significantly out-
performs both EV and Random CS, which in this experimental
setup, for the 6 microphones used, would achieve an ICSM rate
of 1/6 ≈ 16%. CDref achieves a relatively low ICSM rate for
the MixReal case, which can be attributed to the fact that this
case considers more complex situations, comprising multiple
non-direct POSORIs. This type of setup comes in contrast to
the original assumption of the proposed method concerning the
availability of a direct channel. Moreover, even for an informed
CS method such schemes can not be properly addressed, since
a selection among highly distorted channels is not always rele-
vant.

In Table 3, the Average Normalized CD, ANCD, is pre-
sented for CDi, EV and CDref. It is recalled here that the ANCD
of CDi is the upper-bound for a blind CS method. Furthermore,
it can be viewed as an indication of the complexity of the condi-
tions of each dataset. As an example, the higher ANCD for the
CDi in MixReal evidences the inclusion of more unfavorable
cases than in DirReal. This confirms the previously discussed
observations concerning the complexity of the MixReal dataset.
The proposed blind CS method achieves an average distance
closer to the one reached by the informed method, since, as in-
dicated in the ICSM rate evaluation, these two methods repeat-
edly select the same channel.

4.3. Recognition results
With regard to the recognition performance, Table 4 reports the
WER for the recognition of the SDM for each experiment. An
interesting observation concerns the low WER achieved by the
intuitively best channel (L2R) in the DirSim case. However,
there is no direct agreement in the channel ranking given by
the objective SDM scoring and the SDM WER. Finally, Table 5

Table 4: WER [%] of the distributed microphones.
SDM DirSim DirReal MixSim MixReal
L1C 16.6 14.4 16.0 14.8
L2R 10.8 19.2 15.8 16.2
L3L 13.6 15.8 16.5 15.2
L4L 15.0 16.3 17.0 15.1
LA6 16.5 15.1 17.7 14.9

LD07 14.8 14.2 16.4 14.7
Avg 14.5 15.8 16.6 15.2

Table 5: WER [%] by various CS methods.
CS DirSim DirReal MixSim MixReal
CDi 10.8 12.0 12.8 12.6
EV 12.7 14.7 14.6 13.9

CDref 12.1 12.5 14.1 13.7
Random 14.5 15.9 16.8 15.3
Rel. Imp. 4% 14% 3% 1%

presents the average recognition performance of the CS meth-
ods for each dataset. It is recalled here, that Random CS roughly
corresponds to the average of the SDM WER. The average CS
WER is improved over EV with the proposed blind method for
all cases, as shown in Table 5, where the corresponding relative
improvement (Rel. Imp.) is reported.

When observing the proposed evaluation measures in ad-
dition to the recognition accuracy, one can gain a deeper un-
derstanding of the strength of the proposed blind method above
the EV based one. See for example the case of DirReal, where
for both CS methods WER is reduced in comparison to SDM.
However, ICSM rate of CDref is significantly closer to a per-
fect matching rate, a fact not evidenced from the WER. These
remarks indicate the previously discussed gap in the way CS
is traditionally evaluated, by means of WER, and the need for
evaluation measures similar to the ones introduced in this paper.

5. Conclusions

In this work, we presented a CS framework exploiting the CD,
both as a channel scoring function and as a means of detailed
evaluation. Through a series of experimental cases, we have
proved that the proposed blind CS method (i) improves in all
cases the average SDM WER, (ii) consistently outperforms the
state-of-the-art EV-based CS method and (iii) successfully se-
lects the least distorted channel when sufficient room coverage
is provided by the microphone network. Furthermore, it is il-
lustrated how the standard evaluation of CS, based solely on
WER, hides the strengths and weaknesses of different methods.
So far, we have considered reverberation to be the main source
of degradation of distant speech, however, in a real scenario, en-
vironmental noise significantly affects the captured signals. In
a future work, different types of noise, and with different SNR,
will be studied. In addition, it is interesting to study the use of
other objective speech processing measures for CS, both in an
informed and blind fashion. Another open topic derived from
this study, concerns finding more effective solutions when fac-
ing complex conditions, that involve unfavorable speaker posi-
tions and/or orientations. A possible direction towards this goal
is to detect these cases and replace the CS, given by existing
blind methods, with novel techniques.
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